Self-avoiding Walks on The Hexagonal Lattice Mahla Amiri

Mathematics Department of Sharif University of Technology

Contents

- Self_avoiding Walks in General
- Connective Constant on The Hexagonal Lattice

1. Generalities

Paul J. Flory 1953

Definitions

Lattice

A transitive, locally_finite, infinite graph.

 $\mathbb{L} = (\mathbb{V}, \mathbb{E})$

Examples

Walk

A sequence $\gamma=(\gamma_0,\gamma_1,\ldots,\gamma_n)\in\mathbb{V}$ such that $\{\gamma_i,\gamma_{i+1}\}\in\mathbb{E}\quadorall i.$

Self-avoiding Walk

A walk γ such that, if $\gamma_i = \gamma_j$, then i = j .

Self-avoiding Polygon

A self-avoiding walk γ such that, $\gamma_0 = \gamma_n$ and if $\gamma_i = \gamma_j$ then i = j or 0 = n.

Self-avoiding Bridge

A self-avoiding walk γ such that, $\gamma_0. e_1 < \gamma_i. e_1 \leq \gamma_n. e_1$ for $i = 1, \ldots, n$.

Notations

Self-avoiding Walk

 SAW_n = The set of self_avoiding walks of length n . $c_n = |SAW_n| \cdot$

Self-avoiding Polygon

 SAP_n = The set of self-avoiding polygons of length n_{\perp} $p_n = |SAP_n|$.

Self-avoiding Bridge

 SAB_n = The set of self-avoiding bridges of length n. $b_n = |SAB_n|$.

Questions

Perspective?

Combinatorics Probability

What is c_n ?

Depends on the lattice...

$c_n(\mathbb{Z}^1)=2.$

$c_n(\mathbb{T}_d)=(d+1)d^{n-1}.$

No Formula!

$c_n(\mathbb{H})=?$

No Formula!

Numerical Estimations

$c_{71}(\mathbb{Z}^2)pprox 4.19\cdots imes 10^{30}$

$c_{105}(\mathbb{H})pprox 5.66\cdots imes 10^{28}$

Exponential Growth

 $d^n \leq c_n(\mathbb{Z}^d) \leq 2d(2d-1)^{n-1}$

What is the rate of growth?

Proposition 1.1 [Hammersley, 1954]

For any \mathbb{L} , $\lim_{n o \infty} c_n^{1/n} = \mu_c(\mathbb{L})$.

Fekete's Lemma

Let $(a_n)_{n\geq 1}$ be a subadditive sequence. Then:

$$\lim_{n o\infty}rac{a_n}{n}=\inf_{n\geq 1}rac{a_n}{n}$$
 .

Corollary 1.2

$c_n \geq \mu_c^n, \qquad orall n \geq 0.$

Connective Constant

Examples

$\mu_c(\mathbb{Z}^1)=1$

$\mu_c(\mathbb{T}_d) = d$

 $\mu_c(Ladder) = rac{1+\sqrt{5}}{2}$

 $\mu_c(\mathbb{H}) = \sqrt{2+\sqrt{2}}$

More Examples?!

Not Available!

 $\mu_c(\mathbb{H}) = \sqrt{2+\sqrt{2}}$

Theorems

Theorem 1.3

[Hammersley-Welsh, 1962]

On \mathbb{Z}^d , there exists a constant c>0 such that:

 $c_n \leq e^{c\sqrt{n}} b_{n+1}, \quad orall n \geq 1.$

Corollary 1.4

 $\mu_c = \mu_b.$

Remark

Hammersley-Welsh theorem works on the hexagonal lattice.

Proposition 1.5

Let $G(x) = \sum_{n=0}^{\infty} c_n x^n$. Then, the convergence radius of G is $rac{1}{\mu_c}$.

2. Hexagonal Lattice

Conjecture 2.1 [Bernard Nienhuis, 1982]

$$\mu_c(\mathbb{H}) = \sqrt{2+\sqrt{2}}.$$

Theorem 2.2 [Hugo Duminil_Copin, 2012]

$$\mu_c(\mathbb{H}) = \sqrt{2+\sqrt{2}}.$$

Proof

Complex Plane

Holomorphic Functions

Discrete Holomorphic Functions

Simply Connected Domain

Discrete Simply Connected Domain

Dual Lattice

Definition

Domain Ω

The interior of a self-avoiding polygon on the dual lattice.

Fix a mid-edge $a \in \partial \Omega$

Definition

For mid_edge $\, z \in \Omega \cup \partial \Omega$,

$$F(z)=F_{\Omega,a,x,\sigma}(z):=\sum_{\gamma:a
ightarrow z,\gamma\subset\Omega}ex_{T}$$

Where,

$$W_\gamma(a,z)=rac{\pi}{3}(\#L-\#R).$$

$ep[-i\sigma W_\gamma(a,z)]x^{|\gamma|}.$

Lemma 2.3

Let $\ \sigma=rac{5}{8}\ ext{ and } x=rac{1}{\sqrt{2+\sqrt{2}}}$. Then, for any $v\in\Omega$, and the

adjacent mid_edges p, q, r:

(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0.

How to interpret?

Discrete Holomorphic Functions

Morera's Theorem

 $\oint_C f(z) dz = 0$

True for the *F***!**

How?

Contour C

A self-avoiding polygon on the dual lattice.

Discrete Integration

 $\oint_C F(z)dz = \sum_{i=0}^k (f_{i+1}-f_i)F(z_i)$

$$(p-v)[F(p)+e^{2i\pi/3}F(q)+e^{4i\pi/3}F(q)]$$

F(r)] = 0

 $\oint_C F(z) dz = (\ldots) [F(p) + e^{2i\pi/3} F(q) + e^{4i\pi/3} F(r)] = 0$

 $\oint_C F(z) dz = 0 \quad orall C$

Proof of Lemma 2.3

Lemma 2.3

Let $\ \sigma=rac{5}{8}\ ext{ and } x=rac{1}{\sqrt{2+\sqrt{2}}}$. Then, for any $v\in\Omega$, and the

adjacent mid_edges p, q, r:

(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0.

Definition

For mid_edge $\, z \in \Omega \cup \partial \Omega$,

$$F(z)=F_{\Omega,a,x,\sigma}(z):=\sum_{\gamma:a
ightarrow z,\gamma\subset\Omega}ex_{T}$$

Where,

$$W_\gamma(a,z)=rac{\pi}{3}(\#L-\#R).$$

$ep[-i\sigma W_\gamma(a,z)]x^{|\gamma|}.$

Notation $(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = \sum_{\gamma:q \to \{n,q,r\}}$

 $C(\gamma):=(\gamma_{|\gamma|}-v)e^{-i\sigma W_\gamma(a,\gamma_{|\gamma|})}x^{|\gamma|}.$

 $C(\gamma);$ $\gamma:a{
ightarrow}\{p,q,r\},\gamma{\subset}\Omega$

Walks that meet all 3

 $=e^{i4\pi/3}(p-v)e^{-i\sigma W_{\gamma}(a,p)}e^{-i\sigma(-4\pi/3)}x^{|\gamma_1|}.$

$$egin{aligned} C(\gamma_1)+C(\gamma_2)&=(\ldots)(e^{i2\pi/3}\,e^{i\sigma 4\pi/3}+e^{-a})\ &=(\ldots)(2\cosiggl(rac{2\pi}{3}+\sigmarac{4\pi}{3}+2))\ &=(\ldots)(2\cosiggl(rac{2\pi}{3}+rac{5}{8}rac{4\pi}{3}+2))\ &=(\ldots)(2\coshiggl(rac{2\pi}{3}+rac{5}{8}rac{4\pi}{3}+2))\ &=(1+2\cosiggl(rac{2\pi}{3}+rac{5}{8}rac{4\pi}{3}+2))\ &=(1+2\cosiggl(rac{2\pi}{3}+rac{5}{8}+rac{4\pi}{3}+2))\ &=(1+2\cosiggl(rac{2\pi}{3}+rac{5}{8}+2))\ &=(1+2\cosiggl(rac{2\pi}{3}+rac{5\pi}{8}+2))\ &=(1+2\cosiggl(rac{2\pi}{3}+2))\ &=(1+2\cosiggl(rac{2\pi}{3}+2)\ &=(1+2\cosiggl(rac{2\pi}{3}+2))\ &=(1+2\cosiggl(rac{2\pi}{3}+2)\ &=(1+2\cosiggl(rac{2\pi}{3}+$$

 $e^{-i2\pi/3}~e^{-i\sigma 4\pi/3})$

Walks that meet either 2 or 1

 γ_3 γ_2

 $C(\gamma_1)+C(\gamma_2)+C(\gamma_3)$

$$=C(\gamma_1)(1+xe^{-irac{4\pi}{3}}e^{i\sigmarac{\pi}{3}}+xe^{-irac{4\pi}{3}}e^{i\sigmarac{\pi}{3}}+xe^{-irac{\pi}{3}}e^{irac{\pi}{3}}e^{irac{\pi}{3}}e^{irac{\pi}{3}}+xe^{-irac{\pi}{3}}e^{irac{\pi}{3}}e^{$$

$$egin{aligned} &=C(\gamma_1)(1+2x\cosiggl(rac{7\pi}{8}iggr))\ &=C(\gamma_1)(1+2rac{1}{\sqrt{2+\sqrt{2}}}\cosiggl(rac{1}{\sqrt{2+\sqrt{2}}}iggr)) \end{aligned}$$

 $e^{-irac{2\pi}{3}}e^{-i\sigmarac{\pi}{3}})$

 $\left(\frac{7\pi}{8}\right)) = 0.$

Proof of Theorem 2.2

Theorem 2.2 [Hugo Duminil_Copin, 2012]

$$\mu_c(\mathbb{H}) = \sqrt{2+\sqrt{2}}.$$

Compute explicitly?

Domain

From now on,

Step 1.

 $\mu_c(\mathbb{H}) \leq \sqrt{2+\sqrt{2}}.$

 $C = \partial \Omega$ $\oint_C F(z)dz = \int_{top} F(z)dz + \int_{bot} F(z)dz + \int_{sides} F(z)dz = 0.$

Top

 $f_{i+1}-f_i=1 \quad orall i,$ $W_\gamma(a,z_i)=0 \quad orall i.$

 $\implies \int_{top} F(z) dz = \sum_{\gamma: a o top, \gamma \in \Omega} (rac{1}{\sqrt{2+\sqrt{2}}})^{|\gamma|} := B_T^W$

Bottom

$$egin{aligned} f_{i+1}-f_i&=-1 \quad orall i,\ F(a)&=1,\ &\sum_{z\in bot, z
eq a}F(z)&=\cosigg(rac{5\pi}{8}igg)\sum_{\gamma:a
ightarrow botackslash \{a\}, \gamma\subset\Omega}igg(rac{-\sqrt{3}}{\sqrt{3}}igg) \end{aligned}$$

$$:= \cosiggl(rac{5\pi}{8}iggr) A^W_T. \ \Longrightarrow \int_{bot} F(z) dz = -1 - \cosiggl(rac{5\pi}{8}iggr) A^W_T.$$

Sides
$$egin{aligned} & f_{i+1}-f_i=e^{-2\pi i/3}, & orall i, \ & W_\gamma(a,z_i)=-2\pi/3, orall i. \ & \Longrightarrow (f_{i+1}-f_i)e^{-i\sigma W_\gamma(a,z_i)}. \end{aligned}$$

$$egin{aligned} &f_{j+1}-f_j=e^{2\pi i/3},\quadorall j,\ ⅇ &W_\gamma(a,z_j)=2\pi/3,orall j.\ &\Longrightarrow (f_{j+1}-f_j)e^{-i\sigma W_\gamma(a,z_j)}\ &\Longrightarrow &\int_{sides}F(z)dz=\sum_{\gamma:a o sides,\gamma\subset\Omega}x^{|\gamma|}\,dz \end{aligned}$$

$^{_i)}x^{|\gamma|}=e^{-\pi i/4}x^{|\gamma|}.$

$^{z_j)}x^{|\gamma|}=e^{\pi i/4}x^{|\gamma|}.$

 $\cos(\pi/4) \ge 0.$

Therefore

 $B_T^W-1-\cos(5\pi/8)A_T^W+\int_{sides}F(z)dz=0$ $\implies B_T^W + \cos(3\pi/8)A_T^W + \int_{sides} F(z)dz = 1.$

 $B_T:=\lim_{W o\infty}B_T^W.$

$\implies B_T \leq 1, \quad orall T.$

$$egin{aligned} b_n (rac{1}{\sqrt{2+\sqrt{2}}})^n &\leq \sum_{0 \leq T \leq n} B_T \leq n. \ & \implies \quad b_n \leq n \sqrt{2+\sqrt{2}}^n \ & \implies \quad \mu_b = \lim_{n o \infty} b_n^{1/n} \leq \sqrt{2+\sqrt{2}} \lim_{n o n} \mu_b \end{aligned}$$

 $\displaystyle \lim_{
ightarrow\infty} n^{1/n} = \sqrt{2+\sqrt{2}}.$

Hammersley-Welsh , $\mu_c \leq \sqrt{2+\sqrt{2}}.$

Step 2.

 $\sqrt{2+\sqrt{2}}\leq \mu_{c}(\mathbb{H}).$

 $C = \partial \Omega$ $\oint_C F(z)dz = \int_{top} F(z)dz + \int_{bot} F(z)dz = 0$

Тор

 $\cdots \Longrightarrow \int_{top} F(z) dz \leq \sum_{\gamma: a o top, \gamma \subset \Omega} (rac{1}{\sqrt{2+\sqrt{2}}})^{|\gamma|}.$

Bottom

$$egin{aligned} F(a) &= 1, \ &\int_{bot \setminus \{a\}} F(z) dz = (e^{2\pi i/3} e^{-i5/8(-4\pi/3)}) + (e^{-2\pi i}) \ &= 2\cos(2\pi/3 + 5\pi/6) \end{aligned}$$

$$=2\cos(3\pi/2)=0.$$

$$\implies \int_{bot} F(z) dz$$

 $e^{-i5/8(4\pi/3)})$

Therefore

 $\int_C F(z)dz = \int_{ton} F(z)dz - 1 = 0$

 $\implies \int_{ton} F(z) dz = 1$

$$\implies G(\frac{1}{\sqrt{2+\sqrt{2}}}) \ge \sum_{T=1}^{\infty} \sum_{\gamma:1 \to top, \gamma \in \Omega} (\frac{1}{\sqrt{2}})$$
$$\ge \sum_{T=1}^{\infty} 1 = \infty.$$
$$\xrightarrow{\text{Proposition 1.5}} \frac{1}{\sqrt{2+\sqrt{2}}}$$

To Sum UP

Thanks

References

[1] R. Bauerschmidt, H. Duminil-Copin, J. Goodman, and G. Slade, Lectures on self-avoiding walks, Probability and statistical physics in two and more dimensions, Clay Mathematics Proceedings, vol. 15, American Mathematical Society, 2012, pp. 395–467.